Cosmological analysis of Barrow holographic dark energy model considering the Granda-Oliveros infrared cutoff

Author. Miguel Sabogal G.¹

B.Sc Advisor: Alexander Oliveros G²

¹Last year student, Physics Department, Universidad del Atlántico ²Associate Professor, Physics Department, Universidad del Atlántico

September 8, 2021

Content			
000000	0000000000	00	
		Conclusions and future work	References

Introduction

- Modern cosmology
- Barrow holographic dark energy
- Granda-Oliveros infrared cutoff

Our model and results

- Friedmann equations
- Hubble parameter
- Deceleration parameter
- Equation of state
- Stability
- The evolution of densities

Introduction		Conclusions and future work	References
00000	0000000000	00	
Modern cosmolog	y		

(a) The supernova data plotted in terms of brightness (b) Credit: NASA/ LAMBDA Archive/ WMAP (bolometric magnitude) versus redshift. Science Team.

Figure 1: (a) Evidence of the accelerated expansion of the universe from [1]. (b) Λ -CDM model.

Miguel Sabogal García

Universidad del Atlántico

Figure 2: Models that try to explain the Dark Energy problem, review in [2].

Miguel Sabogal García	Universidad del Atlántico	COCO 2021	September 8, 2021	4 / 22

Figure 3: Schematic representation of the holographic principle applied to a black hole, where $S_B = (A/A_0)$. Taken from [3].

In a system with

size L and ultraviolet UV cut

By applying the

holographic principle

to cosmology

 $L^3 \rho_\Lambda \leq L M_p^2.$

(1)

Taking the largest value of L allowed saturates the above inequality, resulting in:

 $\rho_A = 3c^2 M_p^2 L^2.$

The upper limit of the

entropy contained in

the universe

 Introduction
 Our model and results
 Conclusions and future work
 References

 0000
 000000000
 00
 0
 0

Barrow new entropy and Barrow holographic dark energy

Barrow, inspired by representations of the Covid-19 virus, demonstrated that quantum gravitational effects can introduce intricate fractal features into the surface of a black hole [4]

(2)
$$S_B = \left(\frac{A}{A_0}\right)^{1+\Delta/2},$$

where Δ could take the values between $0 \leq \Delta \leq 1$, A is the standard area of the horizon and A_0 is the Planck area.

Figure 4: Diagram of the fractal shapes in the structure of a black hole, taken from [4]

Applying the holographic principle in a cosmological scenario, but using Barrow's entropy, Saridakis [5] obtains:

$$\rho_{\Lambda} = 3c^2 M_p^2 L^{2-\Delta}$$

Figure 5: Pro and cons of differents IR cut-off

In [6] Granda and Oliveros proposed a new infrared cut-off:

(4)
$$L^{-1} = \sqrt{\alpha H^2 + \beta \dot{H}},$$

Introduction	Our model and results	Conclusions and future work	References
000000	000000000	00	
Friedmann eo	quations		

Taking into account:

- Einstein's field equations
- The Friedmann-Robertson-Walker (FRW) metric with k = 0 (flat, homogeneous and isotropic universe).
- The content of the universe at large-scale as a perfect fluid.
- $H_0 = 67.37 \text{ km/s/Mpc}$, $\Omega_{m_0} = 0.315 \text{ and } \Omega_{r_0} = 4.6 \times 10^{-5}$.
- Barrow holographic dark energy density
- And the Granda-Oliveros infrared cutoff,

The Friedmann equations of the model were obtained, the first one is:

(5)
$$H^{2} = \frac{8\pi G}{3}\rho_{m_{0}}a^{-3} + \frac{8\pi G}{3}\rho_{r_{0}}a^{-4} + \left(\alpha H^{2} + \beta \dot{H}\right)^{1-\frac{1}{2}\Delta}$$

Where *a* is the scale factor, $H = \dot{a}/a$ the Hubble parameter, *G* the gravitational constant and c = 1.

	Our model and results	Conclusions and future work	References
000000	000000000	00	
Hubble parameter	varying Δ		

β=0.45 α=0.93

Figure 6: Hubble parameter as a function of the redshift *z*, varying Δ .

Introduction	Our model and results	Conclusions and future work	References
000000	000000000	00	
Hubble parameter a	at high redshift		

Figure 7: Hubble parameter as a function of the redshift *z*, varying Δ and Λ -CDM model at high redshift, the inside figure corresponds to the percentage error between the models.

Deceloration	noromotor vorving A		
000000	000000000	00	0
Introduction	Our model and results	Conclusions and future work	References

Deceleration parameter varying Δ

Figure 8: Deceleration parameter as a function of redshift *z*, varying Δ .

Deceleration	$\mathbf{p}_{\mathbf{r}}$		
000000	000000000	00	0
Introduction	Our model and results	Conclusions and future work	References

Figure 9: Deceleration parameter as a function of redshift z, varying β .

	Our model and results	Conclusions and future work	References
000000	000000000	00	

Deceleration parameter varying α

Figure 10: Deceleration parameter as a function of redshift z, varying α .

			Ŭ
000000	00000000000	00	
Introduction	Our model and results	Conclusions and future work	References

Figure 11: Equation of state for Dark Energy as a function of redshift z, varying Δ .

	Our model and results	Conclusions and future work	References
000000	00000000000	00	
Equation of s	state varying β		

Figure 12: Equation of state for Dark Energy as a function of redshift z, varying β .

Miguel Sabogal García Universidad del Atlántie	o COCO 2021	September 8, 2021 1	16 / 2
--	-------------	---------------------	--------

	Our model and results	Conclusions and future work	References
	00000000000		
Equation of s	state varying α		

Figure 13: Equation of state for Dark Energy as a function of redshift z, varying α .

Miguel Sabogal García	Universidad del Atlántico	COCO 2021	September 8, 2021	17 / 22

Figure 14: On a logarithmic scale, the speed of sound squared by its sign, as a function of the redshift z, for different values of Δ .

	Our model and results	Conclusions and future work	References		
000000	0000000000	00			
The evolution of densities					

Figure 15: The evolution of the densities of matter, dark energy and radiation, for different values of Δ .

Conclusions	Introduction	Our model and results	Conclusions and future work	References
Conclusions	000000	0000000000	0	
	Conclusions			

- With the proposed model it is possible to obtain a regime of accelerated expansion of the universe in late times.
- The values for the Hubble parameter of the proposed model and the Lambda-CDM, show a similar behavior of at least 1.5% at high redshifts.
- As the α and β parameters, the new deformation parameter Δ significantly affects the values of z_T and w_0 .
- The model is stable under perturbations since the early epoch until present and later time, however, it presents a zone of instability as the value of Δ increases, suggesting that it can not take values very far from zero.
- The model exhibit an era of radiation dominance, followed by non-relativistic matter and the current era of dark energy dominance.

Introduction	Our model and results	Conclusions and future work	References
000000	0000000000	00	
Future work			

• We will use the current cosmological observational data in order to extract constraints for α , β and Δ on the new scenario of Barrow holographic dark energy considering the Granda-Oliveros infrared cutoff.

• We will study the phenomenology of Barrow holographic dark energy with a GO infrared cutoff in CLASS

	Our model and results	Conclusions and future work	References
000000	0000000000	00	•
Referencias			

- [1] Perlmutter, Saul, et al. "Measurements of Ω and Λ from 42 high-redshift supernovae." The Astrophysical Journal 517.2 (1999): 565.
- [2] Li, Miao, et al. "Dark energy." Communications in Theoretical Physics, vol. 56, no. 3, pp. 525–604, sep 2011.
- [3] Baggioli, Matteo. "Gravity, holography and applications to condensed matter." arXiv preprint arXiv:1610.02681 (2016).
- [4] J. D. Barrow, "The area of a rough black hole", Physics Letters B, vol 808, p.135643 .2020.
- [5] E. N. Saridakis, "Barrow holographic dark energy," Phys. Rev. D, vol. 102, p. 123525, Dec 2020.
- [6] L. N. Granda and A. Oliveros, Phys. Lett. B 669, 275 (2008).